30 research outputs found

    The distribution and mutagenesis of short coding INDELs from 1,128 whole exomes

    Get PDF
    BACKGROUND: Identifying insertion/deletion polymorphisms (INDELs) with high confidence has been intrinsically challenging in short-read sequencing data. Here we report our approach for improving INDEL calling accuracy by using a machine learning algorithm to combine call sets generated with three independent methods, and by leveraging the strengths of each individual pipeline. Utilizing this approach, we generated a consensus exome INDEL call set from a large dataset generated by the 1000 Genomes Project (1000G), maximizing both the sensitivity and the specificity of the calls. RESULTS: This consensus exome INDEL call set features 7,210 INDELs, from 1,128 individuals across 13 populations included in the 1000 Genomes Phase 1 dataset, with a false discovery rate (FDR) of about 7.0%. CONCLUSIONS: In our study we further characterize the patterns and distributions of these exonic INDELs with respect to density, allele length, and site frequency spectrum, as well as the potential mutagenic mechanisms of coding INDELs in humans. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1333-7) contains supplementary material, which is available to authorized users

    The functional spectrum of low-frequency coding variation

    Get PDF
    Background Rare coding variants constitute an important class of human genetic variation, but are underrepresented in current databases that are based on small population samples. Recent studies show that variants altering amino acid sequence and protein function are enriched at low variant allele frequency, 2 to 5%, but because of insufficient sample size it is not clear if the same trend holds for rare variants below 1% allele frequency. Results The 1000 Genomes Exon Pilot Project has collected deep-coverage exon-capture data in roughly 1,000 human genes, for nearly 700 samples. Although medical whole-exome projects are currently afoot, this is still the deepest reported sampling of a large number of human genes with next-generation technologies. According to the goals of the 1000 Genomes Project, we created effective informatics pipelines to process and analyze the data, and discovered 12,758 exonic SNPs, 70% of them novel, and 74% below 1% allele frequency in the seven population samples we examined. Our analysis confirms that coding variants below 1% allele frequency show increased population-specificity and are enriched for functional variants. Conclusions This study represents a large step toward detecting and interpreting low frequency coding variation, clearly lays out technical steps for effective analysis of DNA capture data, and articulates functional and population properties of this important class of genetic variatio

    First results from recent JET experiments in Hydrogen and Hydrogen-Deuterium plasmas

    Get PDF
    The hydrogen campaign completed at JET in 2016 has demonstrated isotope ratio control in JET-ILW using gas puffing and pellets for fuelling, Neutral Beam Injection alone or in combination, with D/H spectroscopy as a diagnostic. The plasma properties such as confinement, L-H threshold, density limit depend on the isotope composition. The L-H transition power increases with the hydrogen concentration with a wide plateau in the range 0.2<nH/(nD+nH)<0.8. Energy confinement is significantly lower in hydrogen than in comparable deuterium ELMy H-mode plasmas, suggesting an isotope mass scaling that is stronger than in IPB98(y,2). In L-mode, the isotope dependence of confinement is weaker. The H-mode density limit in hydrogen is up to 35% lower than in heuterium, whilst it is found to be higher in L-mode. The lower ion mass leads to reduced tungsten sputtering in hydrogen plasmas. During the campaign, the nD/(nD+nH) ratio dropped to ~1% in only a few discharges after the last deliberate introduction of deuterium, although it was seen to rise again to ~2% with several seconds of exposure of the divertor tiles to ~10MW of auxiliary heating. Several ICRH scenarios were also tested in hydrogen plasmas
    corecore